16k^2-4(-2k^2+11k-4)=0

Simple and best practice solution for 16k^2-4(-2k^2+11k-4)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16k^2-4(-2k^2+11k-4)=0 equation:



16k^2-4(-2k^2+11k-4)=0
We multiply parentheses
16k^2+8k^2-44k+16=0
We add all the numbers together, and all the variables
24k^2-44k+16=0
a = 24; b = -44; c = +16;
Δ = b2-4ac
Δ = -442-4·24·16
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-20}{2*24}=\frac{24}{48} =1/2 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+20}{2*24}=\frac{64}{48} =1+1/3 $

See similar equations:

| 3,330t=18 | | 9(n2+11)=180 | | 3,330÷18=t | | 22-(3c+4)=2(c+3)c | | -x^2=3x-16 | | 3,330÷t=18 | | (-4k+16k^2-4(-2k^2+11k-4))=-4 | | t÷3,330=18 | | (-4k+16k^2-4(-2k^2+11k-4)=-4 | | 6(8n-12)=168 | | (1/2)(-4k+16k^2-4(-2k^2+11k-4))=-2 | | 18=6+4w | | m-12=2184 | | (1/2)(-4k+16k^2-4(-2k^2+11k-4)=-2 | | 9(2n+6)=180 | | x+.2x=130 | | 5-5w=-9 | | 6x-7=10x-47 | | t÷18=3,330 | | x/2+15=32 | | 6k^2-12k+5=0 | | 8x-5x-5=14 | | 0.6•x=210 | | 3+6z=13=6z | | 11z=−66 | | -11z=−66 | | 0.4x+x=140 | | x+.75x=20 | | w-15=1,125 | | -24=3/8p | | x°+7x-8=0 | | x÷3=294 |

Equations solver categories